普通人需要每天喝牛奶吗(成年人还要每天喝牛奶吗)
605 2022-09-30 03:56:34
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.
方法2 把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯蚂核定这四个点共圆.
方法或物兆3 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.
方法4 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.
方法5 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.方法6 证被证共圆的点到衫租某一定点的距离都相等,从而确定它们共圆.
你的几何知识学的不好吗?我是一名大学生,假期在家兼职家教,有一些自己的做题方法。在这里,可以用这轿袜么几个方法来做:
1.利用“四点构成的两直线平行”;
2.证明其中三点共线;
3.利用向量,证明四点构成的任意两个向量共线
设OABC是不共闭孝激面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)
证明:
1)唯一性:
设另有一组实数x',y',z' 使得OP=x'OA+y'OB+z'OC
则有xOA+yOB+zOC=x'OA+y'OB+z'OC
∴(x-x')OA+(y-y')OB+(z-z')OC=0
∵OA、OB、OC不共面
∴x-x'=y-y'=z-z'=0即x=x'、y=y'、z=z'
故实数x,y,z是唯一的
2)若x+y+z=1 则PABC四点共面:
假设OP=xOA+yOB+zOC且x+y+z=1 且PABC不共面
那么z=1-x-y 则慎森OP=xOA+yOB+OC-xOC-yOC
OP=OC+xCA+yCB(CP=xCA+yCB)
点P位于平面ABC内 与假设中的条件矛盾 故原命题成立
这是空间向量中四点共面的推论:若AP=mAB+nAC显然ABCP四点共面,再引入点O(O是空间中任意一点)上式变为OP-OA=m(OB-OA)+n(OC-OA),移基雹瞎项得OP=(1-m-n)OA+mOB+nOC即右边三个系数之和为1。
四点共面
第一种方法:任取这4点中2点做一条直线,证明做出的2条直线相交、平行、或重合即可。
第二种方法:任取4点中3点做一个平面,再证明此平面经过这个点。
第三种方法:若其中有3点共线,则此4点一定共面。(过直线与直线外一点有且仅有一个平面)
如果搏空已知4点坐标肆培,可以用向量法、点到平面距离为0法证明4点共面。
一、四点构成拆族段的两直线平行;
二、其中三点共线;穗宴
三、利用向量,证明四点构成的任意两个向量共线
1。以这四点为顶点的四面体 体积为0。
2。一点到其余三点所确定平面的距离为0。
3。若有三点旅誉共线,则这四点必共面。
4。四点中过任意两点的直线与过其余两点的直线平行或相交。
向量证明四点共面由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz, 得 OP=n OX +mOY +(1-n-m)OZ,整理,得
OP-OZ =n(OX-OZ)+m(OY-OZ)即ZP =nZX +mZY即P、X、Y、Z 四点共面。
以上是充要条件。
2如果通过四点外的一点(空间中)与四点之间的关系来判断折四点共面
A,B,C,D,4个点,与另外一点O,若OA=xOB+yOC+zOD,x+y+z=1,四点就共面
3设一向量的坐标为(x,y,z)。另外一向量的坐标为(a,b,c)。 如果郑竖(x/a)=(y/b)=(z/c)=常数,则两向量平行如果ax+by+cz=0,则两向量垂直。答案补充 三点一定共面,证第四点在该平面内用向量,另取一点O 如向量OA=ax向量OB+bx向量OC+cx向量OD,且a+b+c=1 则有四点共面 答案补充 方法已经很详细了呀。4线平行线: 两条线的方向向量矢量积为0,且两条线没交点
面平行线:是线平行面吧,线的方向向量和平面法向量垂直,即线的方向向量和平面法向量数量积为0 ,且线不在平面内
三点共面:三点肯定是共面的,我猜你说的是三点共线吧,比如ABC三点,陆塌证明共线,证明AB与BC的方向向量矢量积为0
四点共面:比如ABCD三点证明AB,AC,AD三者满足先求AB,AC的矢量积a,再a和AD数量积为0
3怎样证明空间任意一点O和不共线的三点A,B,C,向量OP=x向量OA+y向量OB+z向量OC且x+y+z=1,则P,A,B,C四点共面
简明地证明,网上的不具体,不要复制!
证明:由x+y+z=1→x向量OC + y向量OC + z向量OC=向量OC,且:x向量OA+y向量OB+z向量OC=向量OP
将上边两式相减得:向量OP-向量OC=x(向量OA-向量OC)+y(向量OB-向量OC)即:向量CP=x向量CA+y向量CB
由x向量CA+y向量CB所表示的向量必在平面ABC内→P点必在平面ABC内。
故:A,B,C,P四点共面。
4可以先随便假设其中3点共面(很简早丛圆单2点确定一条直线,直线和直线外一点可以确定1个平面) 不防设 A B C 三点共面 只需证明P点在这个平面上即可 以下向量符号省去
证明: PA=BA-BP=OA-OB-(OP-OB)=OA-OP=OA-(a向量OA+b向量OB+c向量OC )=(1-a)OA-bOB-cOC=(b+c)OA-bOB-cOC=bBA+cCA
到这里 因为ABC已经确定了一个平面且 PA=bBA+cCA
所以PA平行平面 又A在平面内 所以P点也在该平面内,所以四点共面
如果两个向量a. b不共线,则向量p与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb
编辑本段共面向量的定义: 能平移到同一平面上的三个向量叫做共面向量
编辑本段推论:推论1 设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)
使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面(但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)
证明: 1)唯一性:
设另有一组实数x',y',z' 使得OP=x'OA+y'OB+z'OC
则有xOA+yOB+zOC=x'OA+y'OB+z'OC ∴(x-x')OA+(y-y')OB+(z-z')OC=0
∵OA、OB、OC不共面∴x-x'=y-y'=z-z'=0即x=x'、y=y'、z=z'
故实数x,y,z是唯一的
2)若x+y+z=1 则PABC四点共面:
假设OP=xOA+yOB+zOC且x+y+z=1且PABC不共面
那么z=1-x-y 则OP=xOA+yOB+OC-xOC-yOC
OP=OC+xCA+yCB(CP=xCA+yCB)
点P位于平面ABC内与假设中的条件矛盾故原命题成立
推论2
空间一点P位于平面MAB内的充要条件是存在有序实数对x.y,使 MP=xMA+yMB{MP MA MB 都表示向量} 或对空间任一定点O,有 OP=OM+xMA+yMB {OP,OM,MA,MB表示向量}