哈蒙双百大联考 2022~2023学年上学期高三大联考(10月)数学 答案

2022-11-02 16:04:19

哈蒙双百大联考 2022~2023学年上学期高三大联考(10月)数学试卷答案,我们目前收集并整理关于哈蒙双百大联考 2022~2023学年上学期高三大联考(10月)数学得系列试题及其答案,更多试题答案请关注我们

试题答案

哈蒙双百大联考 2022~2023学年上学期高三大联考(10月)数学试卷答案,以下是该试卷的部分内容或者是答案亦或者啥也没有

10.若(3-2a)${\;}^{-\frac{2}{3}}$>a${\;}^{-\frac{2}{3}}$,则实数a的取值范围是(1,$\frac{3}{2}$)∪($\frac{3}{2}$,3).

分析(1)曲线C1:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ+sinθ}\\{y=\sqrt{3}sinθ-cosθ}\end{array}\right.$(θ为参数),两式平方相加可得直角坐标方程;曲线C2:ρsin($θ+\frac{π}{6}$)=1,展开可得:$\frac{\sqrt{3}}{2}ρsinθ$+$\frac{1}{2}ρcosθ$=1,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可化为直角坐标方程.
(2)原点O到直线C2:$\sqrt{3}y+x-2$=0的距离d=1=$\frac{1}{2}$r,直线$\sqrt{3}$y+x=0与圆的两个交点A,B满足条件.联立$\left\{\begin{array}{l}{\sqrt{3}y+x=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解出利用$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,分别化为极坐标A,B.
设与直线:$\sqrt{3}y+x-2$=0平行且与圆相切的直线方程为:$\sqrt{3}$y+x+m=0,(m<0).与圆的方程联立化为:4y2+2$\sqrt{3}$my+m2-4=0,令△=0,解得m,即可得出.

解答解:(1)曲线C1:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ+sinθ}\\{y=\sqrt{3}sinθ-cosθ}\end{array}\right.$(θ为参数),两式平方相加可得:x2+y2=4,
曲线C2:ρsin($θ+\frac{π}{6}$)=1,展开可得:$\frac{\sqrt{3}}{2}ρsinθ$+$\frac{1}{2}ρcosθ$=1,化为直角坐标方程:$\sqrt{3}y+x-2$=0.
(2)原点O到直线C2:$\sqrt{3}y+x-2$=0的距离d=$\frac{|0-2|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=1=$\frac{1}{2}$r,
直线$\sqrt{3}$y+x=0与圆的两个交点A,B满足条件.
联立$\left\{\begin{array}{l}{\sqrt{3}y+x=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$,
利用$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,分别化为极坐标A$(2,\frac{5π}{6})$,B$(2,\frac{11π}{6})$.
设与直线:$\sqrt{3}y+x-2$=0平行且与圆相切的直线方程为:$\sqrt{3}$y+x+m=0,(m<0).
联立$\left\{\begin{array}{l}{\sqrt{3}y+x+m=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,化为:4y2+2$\sqrt{3}$my+m2-4=0,
令△=12m2-16(m2-4)=0,解得m=-4.
∴$(y-\sqrt{3})^{2}$=0,
解得y=$\sqrt{3}$,x=1.
∴切点C$(1,\sqrt{3})$,化为极坐标C$(2,\frac{π}{3})$.
∴满足条件的这三个点的极坐标分别为:极坐标A$(2,\frac{5π}{6})$,B$(2,\frac{11π}{6})$,C$(2,\frac{π}{3})$.

点评本题考查了极坐标方程化为直角坐标方程、圆的标准方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

哈蒙双百大联考 2022~2023学年上学期高三大联考(10月)数学
上一篇:2022年秋季鄂东南省级示范高中教育教学改革联盟学校高三期中联考化学 答案
下一篇:衡中同卷 2022-2023高考分科综合测试卷 新教材/新高考(1一)英语 答案
相关文章